CIBSS - Centre for integrative Biological Signalling StudiesCIBSS

Associate Investigators

Prof. Dr. Claudine Kraft

Prof. Dr. Claudine Kraft

Kontakt

Prof. Dr. Claudine Kraft
Institute for Biochemistry and Molecular Biology (Faculty of Medicine)
University of Freiburg

T +49 761 203 5221
claudine.kraft(at)biochemie.uni-freiburg.de

Weitere Informationen

Our group aims at understanding how the molecular machinery of autophagy, the cellular waste disposal system, works.

The major focus of our work lays on dissecting the molecular mechanisms in autophagy. The field of autophagy is still very young, as it only emerged in the last two decades. Many basic questions remain unanswered, such as how autophagosomes form and where the autophagic membranes come from. We believe in hypothesis driven basic research to study how cells function. Our vision is to first study the basic molecular mechanisms in a simple setup, to then understand how a pathway acts in more complex situations, such as multicellular organisms or diseases.

10 selected publications:

  • Vac8 establishes an autophagosome formation site between the vacuole and the ER.
    Hollenstein D, Gómez‐Sánchez R, Ciftci A, Kriegenburg F, Mari M, Torggler R, Licheva M, Reggiori F, Kraft C (2019).
    J Cell Sci 2019;132(22)
  • Reconstitution reveals Ykt6 as the autophagosomal SNARE in autophagosome-vacuole fusion.
    Bas L, Papinski D, Licheva M, Torggler R, Rohringer S, Schuschnig M, and Kraft C (2018).
    J Cell Biol. 217: DOI: 10.1083/jcb.201804028
  • Two independent pathways within selective autophagy converge to activate Atg1 kinase at the vacuole.
    Torggler R, Papinski D, Brach T, Bas L, Schuschnig M., Pfaffenwimmer T., Rohringer S, Matzhold T, Schweida D, Brezovich A and Kraft C (2016).
    Mol Cell 64: 221-235.
  • An in vivo detection system for transient and low abundant protein interactions and their kinetics in budding yeast.
    Brezovich A, Schuschnig M, Ammerer G and Kraft C (2015).
    Yeast 32: 355-365.
  • SLC is an integral component of the lysosomal amino acid-sensing machinery that controls mTORC1 activity.
    Rebsamen M, Pochini L, Stasyk T, Araujo M, Galluccio M, Kandasamy R, Snijder B, Fauster A, Fudashevskaya E, Bruckner M, Scorzoni S, Filipek P, Huber K, Bigenzahn J, Heinz L, Kraft C, Bennett K, Indiveri C, Huber L and Superti-Furga G (2015).
    Nature 519: 477-481.
  • The Hrr25 kinase promotes selective autophagy by phosphorylating the cargo-receptor Atg19.
    Pfaffenwimmer T, Reiter W, Brach T, Nogellova V, Papinski D, Schuschnig M, Abert C, Ammerer G, Martens S and Kraft C (2014).
    EMBO Reports 15: 862-870.
  • Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase.
    Papinski D, Schuschnig M, Reiter W, Wilhelm L, Barnes C, Majolica A, Hansmann I, Pfaffenwimmer T, Kijanska M, Stoffel I, Lee SS, Brezovich A, Lou HJ, Turk BE, Aebersold R, Ammerer G, Peter M and Kraft C (2014).
    Mol Cell 53: 471–483.
  • Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy.
    Kraft C*, Kijanska M, Kalie E, Siergiejuk E, Lee S, Semplicio G, Stoffel I, Brezovich A, Verma M, Hansmann I, Ammerer G, Hofmann K, Tooze S, Peter M* (2012).
    EMBO J 31: 3691-703 (* corresponding authors).
  • Activation of Atg1 kinase in autophagy by regulated phosphorylation.
    Kijanska M, Dohnal I, Reiter W, Kaspar S, Stoffel I, Ammerer G, Kraft C*, Peter M* (2010).
    Autophagy 6: 1168-1178 (* corresponding authors).
  • Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease.
    Kraft C*, Deplazes A, Sohrmann M, Peter M* (2008).
    Nature Cell Biol 10: 602-610 (* corresponding authors).