CIBSS Launchpad Funds Recipients 2025

Dr. Jedrzej Dobrogojski

Dr. Jedrzej Dobrogojski

Contact

Dr. Jedrzej Dobrogojski
Institute of Biology II, Department of Molecular Plant Physiology (MoPP), University
of Freiburg

T +49 761 203-97635
jedrzej.dobrogojski(at)biologie.uni-freiburg.de

Further Information

WWW

Selected publications:

  • Dobrogojski J., Nguyen V.H., Kowalska J., Borek S., Pietrowska-Borek M. 2023. The plasma membrane purinoreceptor P2K1/DORN1 is essential in stomatal closure evoked by extracellular diadenosine tetraphosphate (Ap4A) in Arabidopsis thaliana.International Journal of Molecular Sciences, 24, 16688. Doi.org/10.3390/ijms242316688.
  • Pietrowska-Borek M., Wojdyła-Mamoń A., Dobrogojski J., Młynarska-Cieślak A., Baranowski M.R., Dąbrowski J.M., Kowalska J., Jemielity J., Borek S., Pedreño M.A., Guranowski A. 2020. Purine and pyrimidine dinucleoside polyphosphates differentially affect the phenylpropanoid pathway in Vitis vinifera L. cv. Monastrell suspension cultured cells.Plant Physiology and Biochemistry, 147, 125-132. Doi.org/10.1016/j.plaphy.2019.12.015.
  • Pietrowska-Borek M., Dobrogojski J., Sobieszczuk-Nowicka E., Borek S. 2020. Newinsight into plant signaling: extracellular ATP and uncommon nucleotides, Cells, 9 (2),345. Doi.org/10.3390/cells9020345.
  • Dobrogojski J., Adamiec M, Luciński R. 2020. The chloroplast genome: a review. Acta Physiologiae Plantarum, 42, 1-13. Doi.org/10.1007/s11738-020-03089-x.
  • Führer M., Gaidora A., Venhuizen P., Dobrogojski J., Béziat C., Feraru M.I., Kleine-Vehn J., Kalyna, M., Barbez E. 2020. FRUITFULL Is a Repressor of Apical Hook Opening in Arabidopsis thaliana. International Journal of Molecular Sciences, 21, 6438 Doi.org/10.3390/ijms21176438.
  • Luciński R., Dobrogojski J., Ishikawa T., Adamiec M. 2024. The role of EGY2 protease in response to high light stress.Functional Plant Biology, 51. Doi.org/10.1071/FP23243
  • Adamiec M., Dobrogojski J., Wojtyla Ł., Luciński, R. 2022. Stress-related expression of the chloroplast EGY3 pseudoprotease and its possible impact on chloroplasts’ proteome composition. Frontiers in Plant Science, 13. Doi.org/10.3389/fpls.2022.965143.
  • Pietrowska-Borek M., Dobrogojski J., Wojdyła-Mamoń A.M., Romanowska J., Gołębiewska J., Borek S., Murata K., Ishihara A., Pedreño M.Á., Guranowski A. 2021. Nucleoside 5′-phosphoramidates control the phenylpropanoid pathway in Vitis vinifera suspension-cultured cells. International Journal of Molecular Sciences, 22, 13567. Doi.org/10.3390/ijms222413567.
  • Adamiec M., Szomek M., Gabała E., Dobrogojski J., Misztal L., Luciński R. 2021. Fatty acid composition and cpDNA content in Arabidopsis thaliana mutants deprived of EGY1 protease. Photosynthetica, 59, 633-639. Doi.org/10.32615/ps.2021.053.
  • Dobrogojski J., Spychalski M., Luciński R., Borek S. 2018. Transgenic plants as a source of polyhydroxyalkanoates. Acta Physiologiae Plantarum, 40, 1-17. Doi.org/10.1007/s11738-018-2742-4.

 

The role of the extracellular matrix in ROS signaling in plants.


The plant extracellular matrix (ECM), also referred to as the cell wall, is a complex structure
rich in polysaccharides and proteins. It carries a strong negative charge due to the high
abundance of acidic polysaccharides such as pectin. Pectin comprises up to 30% of the cell
wall, and its de-methylesterified (negatively charged) binds Ca²⁺ to form 'egg-box' structures
that reinforce wall strength and rigidity. While the extracellular matrix is known for its structural
role, emerging evidence suggests it may also impact signaling processes in plants (Rössling et al., 2024).
Reactive oxygen species (ROS) are highly reactive molecules that serve as important
signaling cues in plant development and stress responses. However, excessive ROS
accumulation can cause oxidative damage, necessitating efficient scavenging mechanisms to
maintain cellular homeostasis. One common ROS detoxification mechanism involves proton
donation: molecules with available protons, such as flavonoids and other small antioxidants,
can neutralize ROS through redox reactions. In principle, any molecule with proton-donating
groups under physiological conditions could contribute to ROS scavenging (Mittler et al.,
2022). Given the biochemical properties of the extracellular matrix, I propose that changes in
cell wall composition may influence extracellular ROS dynamics—either directly, by providing
proton donors essential for ROS scavenging, or indirectly, by modulating calcium signaling.
Understanding the interplay between cell wall charge, ROS scavenging, and calcium signaling
will provide new insights into plant resilience mechanisms, with potential implications for
improving stress tolerance in crops through targeted manipulation of extracellular matrix
properties.