Using the CRISPR-Cas9 system from the pathogen Streptococcus pyogenes as a model, the research team has now discovered that the leader RNA prioritizes immune defense. This sequence is located adjacent to the segment of repeats and viral DNA and is responsible for picking up the viral snippets. During transcription, it folds with the first two repeats surrounding the newest snippet, driving production of the first CRISPR RNA over other CRISPR RNAs. Thus, the system prepares to search for this virus. “The mechanism is specific to many CRISPR systems involving the Cas9 protein commonly used for genome editing, although other mechanisms likely exist for prioritizing anti-viral defense,” says Chunyu Liao, lead author of the study published in the journal Nature Microbiology.
“This outcome was fully unexpected. The leader RNA was only thought to direct where new viral snippets were integrated,” explains corresponding author of the study, Chase Beisel. Beisel is a professor at JMU and head of the Synthetic RNA Biology Department at HIRI.
“The structure formed between this sequence and the first two repeats is a new element in CRISPR biology. It reveals another mechanism by which RNA can contribute to immune defense. Our research assigns a whole new role to the leader sequence, which has not previously been associated with CRISPR RNA production,” adds Liao. According to Beisel, the findings are significant: “The 2020 Nobel Prize in Chemistry was awarded, among other things, for the discovery of how CRISPR systems involving Cas9 produce CRISPR RNAs. Our study offers new insights into this process: it shows why the location of these snippets is as important as their sequence.”
Beyond providing insights into the arms race between bacteria and viruses, this newly discovered mechanism could be used to develop multiplexed CRISPR technologies for the treatment of diseases, which are caused by a variety of mutations in the genome.
Original Publication
Liao, C., Sharma, S., Svensson, S.L. et al. Spacer prioritization in CRISPR–Cas9 immunity is enabled by the leader RNA. Nat Microbiol (2022). doi.org/10.1038/s41564-022-01074-3
Originally published on:
www.helmholtz-hiri.de/en/newsroom/news/detail/news/new-crispr-element-regulates-viral-defense/