Keywords:
Machine Learning, Deep Learning, Integration of Molecular and Clinical Data
10 selected publications:
- The performance of deep generative models for learning joint embeddings of single-cell multi-omics data.
Brombacher E, Hackenberg M, Kreutz C, Binder H, Treppner M. (2022). ,
Frontiers in Molecular Biosciences 962644. - Using Differentiable Programming for Flexible Statistical Modeling.
Hackenberg M, Grodd M, Kreutz C, Fischer M, Esins J, Grabenhenrich L, Karagiannidis C, Binder H. (2022).
The American Statistician 76(3):270–9. - Stratified neural networks in a time-to-event setting.
Kuruc F, Binder H, Hess M. (2022)
Brief Bioinform; 23(1):1–11. - Interpretable generative deep learning: an illustration with single cell gene expression data.
Treppner M, Binder H, Hess M. (2022)
Human Genetics; 141:1481–98. - Synthetic observations from deep generative models and binary omics data with limited sample size.
Nußberger J, Boesel F, Lenz S, Binder H, Hess M. (2021)
Brief Bioinform;22(4):1–12. - Synthetic single cell RNA sequencing data from small pilot studies using deep generative models.
Treppner M, Salas-Bastos A, Hess M, Lenz S, Vogel T, and Binder H. (2021)
Scientific Reports; 11:9403. - Exploring generative deep learning for omics data by using log-linear models.
Hess M, Hackenberg M, and Binder H. (2020)
Bioinformatics; 36:5045–53. - Bioconductor package for interactive differential expression analysis.
Marini F, Linke J, and Binder H. (2020)
BMC Bioinformatics; 21:565. - Partitioned learning of deep Boltzmann machines for SNP data.
Hess M, Lenz S, Blätte TJ, Bullinger L, and Binder H. (2017)
Bioinformatics; 33:3173–80. - Feasibility of sample size calculation for RNA-seq studies.
Poplawski A and Binder H. (2017)
Briefings in Bioinformatics; 19:713–20.