Associate Investigators

Prof. Dr. Wilfried Weber

Prof. Dr. Wilfried Weber

Contact

Prof. Dr. Wilfried Weber
Currently: INM – Leibniz Institute for New Materials / Universität des Saarlandes, Saarbrücken


wilfried.weber(at)leibniz-inm.de

Further Information

WWW

In our research we are developing and applying molecular optogenetic technologies for the light-inducible control of biological signalling at every level of the signal transduction cascade. Examples include the modulation of the mechanical properties of the extracellular matrix or of the concentration of extracellular biomolecules, the optical control of cell surface receptors and intracellular kinase cascades, or the regulation of the expression state of different promoters. By controlling the duration and location of illumination, we induce molecular signal reaction with high spatiotemporal resolution down to the µm and seconds range. This allows us to analyze how the resulting signals are propagates across scales.

In order to keep track with the rapidly growing number of molecular optogenetic technologies, our group developed and curates the online database

www.optobase.org.

 

Key words:

Gene Switch, Molecular Optogenetics, Photoreceptor, Synthetic Biology



We will illuminate cell biology research by developing light-responsive molecular optogenetic switches

10 selected publications:

  • Phytochrome-based extracellular matrix with reversibly tunable mechanical properties
    Hörner M, Raute K, Hummel B, Madl J, Creusen G, Thomas OS, Christen EH, Hotz N, Gübeli RJ, Engesser R, Rebmann B, Lauer J, Rolauffs B, Timmer J, Schamel WWA, Pruszak J, Römer W, Zurbriggen MD, Friedrich C, Walther A, Minguet S, Sawarkar R, Weber W (2019).
    Adv Mater. 31(12):e1806727.
  • Optogenetic control of integrin–matrix interaction.
    Baaske J, Mühlhäuser WWD, Yousefi OS, Zanner S, Radziwill G, Hörner M, Schamel WWA, Weber W  (2019).
    Commun Biol. 2:15.
  • OptoBase: A web platform for molecular optogenetics.
    Kolar K, Knobloch C, Stork H, Žnidarič M, Weber W (2018).
    ACS Synth Biol. 7(7):1825-1828
  • Synthetic biology-inspired design of signal-amplifying materials systems
    Wagner HJ, Engesser R, Ermes K, Geraths C, Timmer J, Weber W.
    Materials Today 2018; doi: 10.1016/j.mattod.2018.04.006
  • Synthetic Biology makes polymer materials count
    Beyer HM, Engesser R, Hörner M, Koschmieder J, Beyer P, Timmer J, Zurbriggen MD, Weber W (2018).
    Adv Mater. 30(21):e1800472
  • Control of gene expression using a red- and far-red light-responsive bi-stable toggle switch.
    Müller K, Zurbriggen MD, Weber W (2014).
    Nat. Protoc. 9, 622-32.
  • Remote-controlled hydrogel depots for time-scheduled vaccination.
    Gübeli RJ, Hövermann D, Seitz H, Rebmann B, Schoenmakers RG, Ehrbar M, El Hamri GC, El Baba MD, Werner M, Müller M, Weber W (2013).
    Adv Funct.Mater. 3, 5355-5362.
  • Multi-chromatic control of mammalian gene expression and signaling.
    Müller K, Engesser R, Schulz S, Steinberg T, Tomakidi P, Weber CC, Ulm R, Timmer J, Zurbriggen MD, Weber W (2013).
    Nucleic Acids Res. 41, e124.
  • Emerging biomedical applications of synthetic biology.
    Weber W, Fussenegger M (2011).
    Nat Rev Genet. 13, 21-35.
  • Drug-sensing hydrogels for the inducible release of biopharmaceuticals.
    Ehrbar M, Schoenmakers R, Christen EH, Fussenegger M, Weber W (2008).
    Nat Mater. 7, 800-4.