CIBSS Launchpad Funds Recipients 2025

Dr. Tobias Dürr-Mayer

Dr. Tobias Dürr-Mayer

Contact

Dr. Tobias Dürr-Mayer
Institute for Biochemistry and Molecular Biology
University of Freiburg

T +49 761 203-6076
tobias.duerr-mayer(at)biochemie.uni-freiburg.de

Further Information

WWW

Selected publications:

  • B. Lázaro, A. Sarrias, F. Tadeo, J. M. Martínez-Lainez, A. Fernanadez, E. Quandt Herrera, B. Depares, T. Dürr-Mayer, H. J. Jessen, J. Clotet, S. Bru, Methods 2025, 234, 211: Optimized biochemical method for human Polyphosphate quantification. 
  • T. Dürr-Mayer, A. Schmidt, S. Wiesler, T. Huck, A. Mayer, H. J. Jessen, Chem. Eur. J. 2023, 29, e202302400: Non-Hydrolysable Analogues of Cyclic and Branched Condensed Phosphates: Chemistry and Chemical Proteomics.
  • T. M. Haas, S. Mundinger, D. Qiu, N. Jork, K. Ritter, T. Dürr-Mayer, A. Ripp, A. Saiardi, G. Schaaf, H. J. Jessen, Angew. Chem. Int. Ed.2022, 61, e202112457: Stable Isotope Phosphate Labelling of Diverse Metabolites is Enabled by a Family of 18O‑Phosphoramidites.
  • T. M. Haas, S. Wiesler, T. Dürr-Mayer, A. Ripp, P. Fouka, D. Qiu, H. J. Jessen, Angew. Chem. Int. Ed. 2022, 61, e202113231: The Aryne Phosphate Reaction.
  • T. Dürr-Mayer, D. Qiu, V. B. Eisenbeis, N. Steck, M. Häner, A. Hofer, A. Mayer, J. S. Siegel, K. K. Baldridge, H. J. Jessen, Nat. Commun. 2021, 12, 5368: The chemistry of branched condensed phosphates.   
  • H. J. Jessen, T. Dürr-Mayer, T. M. Haas, A. Ripp, C. C. Cummins, Acc. Chem. Res.2021, 54, 4036: Lost in Condensation: Poly-, Cyclo-, and Ultraphosphates.
  • T. Bittner, C. Wittwer, S. Hauke, D. Wohlwend, S. Mundinger, A. K. Dutta, D. Bezold, T. Dürr, T. Friedrich, C. Schultz, H. J. Jessen, J. Am. Chem. Soc. 2020, 142, 10606: Photolysis of Caged Inositol Pyrophosphate InsP8 Directly Modulates Intracellular Ca2+ Oscillations and Controls C2AB Domain Localization.

 

 

In vivo Identification of Kinase Phosphorylation Targets Using Analog-Sensitive Kinases and Next-Generation ATP Probes

Reversible phosphorylation is a key regulatory mechanism, controlling processes such as growth, differentiation, and stress responses. Despite its importance, identifying direct kinase-substrate relationships and understanding the timing of phosphorylation events in vivo remain major challenges. A central limitation is that all kinases rely on the same intracellular ATP pool, making it difficult to distinguish the activity of individual kinases under physiological conditions. Traditional approaches, such as radioactive labelling or thiophosphate analogues, are mostly restricted to in vitro use and often lack temporal resolution or disrupt cellular integrity.

Our project addresses these limitations by developing a novel system based on light-activated, cell-permeable ATP analogues labelled with heavy oxygen isotopes. These analogues are selectively used by engineered analog-sensitive (as-) kinase variants, allowing specific and temporally controlled labelling of its substrates in vivo. Combined with high-resolution phosphoproteomics, this approach will enable precise mapping of kinase targets and their phosphorylation kinetics, establishing a broadly applicable platform for dissecting signalling networks in living cells. The first step will now be to synthesize a variety of ATP analogs to determine optimal substrates for certain as-kinases.