CIBSS - Centre for integrative Biological Signalling StudiesCIBSS

· Pressemitteilung

Molekularer Regler des Pflanzenwachstums

Freiburger Forschende entdecken einen bisher unbekannten Mechanismus, der das Wachstumshormon Auxin reguliert

Das Wachstum einer Pflanze ist kein einheitlicher Vorgang: Besonders an Spross- und Wurzelspitze wächst sie in die Länge, während sich an anderen Stellen neue Blätter oder Blüten bilden. Diese verschiedenen Vorgänge müssen aufeinander abgestimmt sein und gleichzeitig auf äußere Einflüssen wie Temperatur und Licht reagieren. Das Pflanzenhormon Auxin ist dabei ein wichtiges Bindeglied: Das Molekül wirkt als Wachstumssignal, dessen Konzentration und damit Signalstärke sich entsprechend der Umweltbedingungen der Pflanze verändern. Ein Forschungsteam um Prof. Dr. Jürgen Kleine-Vehn vom Exzellenzcluster CIBSS – Centre for Integrative Biological Signalling Studies an der Universität Freiburg hat nun einen Kontrollmechanismus identifiziert, der zu hohe Auxin-Mengen in Pflanzenzellen ausgleicht. Die Ergebnisse der Forschenden aus Freiburg und von der Universität für Bodenkultur in Wien/Österreich, sind als „Research Highlight“ in der Fachzeitschrift Development erschienen.

 

 

Bild: PILS6 Proteine (grün) in der Wurzelspitze. Dr. Elena Feraru /Universität für Bodenkultur Wien

Signal für Wachstum

Das Molekül Auxin gibt in Pflanzenzellen das Signal für Zellteilung und Zellstreckung, indem es im Zellkern die Genaktivität steuert. Die genaue Wirkung hängt dabei vom jeweiligen Gewebe und dem Zusammenspiel mit anderen Hormonen und Signalen ab. Besonders wichtig ist die Höhe der Auxin-Konzentration im Zellkern. „Die Konzentration von Auxin wirkt entscheidend auf das Pflanzenwachstum, schwankt aber gleichzeitig stark, da es durch so viele verschiedene Faktoren beeinflusst wird,“ erklärt Kleine-Vehn. „Die Pflanzenzelle braucht also Kontrollprozesse um solche Schwankungen auszugleichen.“

 

Neu entdeckter Mechanismus als Zufallsfund

Einen solchen Kontrollprozess entdeckten die Forschenden nun, als sie den Einfluss der sogenannten PILS Proteine auf Auxin untersuchten. Diese Transportproteine können Auxin in das Endoplasmatische Retikulum (ER) transportieren, eine abgeschlossene Struktur innerhalb der Zelle, von wo aus es nicht mehr in den Zellkern gelangen kann. „Das Auxin ist dadurch sozusagen stummgeschaltet“, ergänzt Kleine-Vehn. In einer vorherigen Veröffentlichung konnten er und Dr. Elena Feraru von der Universität für Bodenkultur in Wien, die auch Erstautorin der aktuellen Studie ist, bereits zeigen, dass PILS-Proteine die Wirkung von Auxin bei Hitze beeinflussen: Bei höheren Umgebungstemperaturen reduziert sich die Menge an PILS6, und mehr Auxin kann in den Kern gelangen um das Wurzelwachstum anzuregen. Für die Pflanze ist das wichtig, denn hohe Temperaturen bedeuten häufig auch Trockenstress, und die längeren Wurzeln erreichen das Wasser in tieferen Regionen.

„In der aktuellen Studie hatten wir eigentlich nach Mechanismen gesucht, die diese PILS-abhängige Hitzeantwort verändern.“ beschreibt Kleine-Vehn, wie sie zu den aktuellen Ergebnissen gelangt sind. Die Forschenden hatten mithilfe eines Verfahrens, das vorwärts gerichtetes genetisches Screening genannt wird, nach den Genen gesucht, die PILS6 bei höheren Temperaturen herunterregulieren. Dabei verglichen sie die Menge von PILS6 in mehreren Tausend mutagenisierten Keimlingen.

 

Auxin beeinflusst die Menge von PILS6

Eines der identifizierten Gene, GASP1, hatte zwar einen Einfluss auf PILS6, schien aber nicht die eigentlich gesuchte, temperaturabhängige Stellschraube zu sein. Was die Forschenden dadurch aber stattdessen bemerkten: Das Auxin selbst beeinflusst, wie viel PILS6 vorhanden ist. Dadurch ergibt sich ein regulatorischer Mechanismus: Bei zu hohen Auxin-Konzentrationen gibt es mehr PILS6, das wiederum mehr Auxin in das ER transportiert und so stummschaltet. Bei niedrigen Auxin-Leveln nimmt die Menge an PILS6 ab und mehr Auxin kann in den Kern gelangen. Das erklärt, warum nicht jede Schwankung der Auxin-Konzentration das Wachstumsprogramm einer Pflanze verändert. Dieser neu entdeckte Mechanismus könnte daher ein grundlegender Steuerungsprozess für stabiles Wachstumsverhalten von Pflanzen sein.

 

Profile of Jürgen Kleine-Vehn

 

Originalpublikation
Feraru, E., Feraru, MI. Moulinier-Anzola, J., Schwihla, M., Ferreira Da Silva Santos, J., Sun, L., Waidmann, S., Korbei B, Kleine-Vehn, J. (2022): PILS proteins provide a homeostatic feedback on auxin signaling output. In: Development. DOI:10.1242/dev.200929

 

Ursprüngliche Pressemitteilung